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1 Introduction

Let us consider the following problem
ut −∆u = f(x, u) in Ω

u = 0 on Γ
u(0) = u0 in Ω

(1.1)

in a bounded domain Ω ⊂ RN , N ≥ 1, with f of the form

f(x, u) = g(x) +m(x)u+ f0(x, u), x ∈ Ω, u ∈ R, (1.2)

where
g ∈ Lq0(Ω), with N/2 < q0 <∞, m ∈ Lr0(Ω) with N/2 < r0 ≤ ∞ (1.3)
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and f0 is a Carathéodory function, locally Lipschitz in the second variable with an Lq0(Ω)
Lipschitz constant, i.e, such that for |u| ≤ R and |v| ≤ R we have

|f0(x, u)− f0(x, v)| ≤ L0(x,R)|u− v| (1.4)

with 0 ≤ L0(·, R) ∈ Lq0(Ω) for each R > 0 , and with f0(·, 0) = ∂uf0(·, 0) = 0.
Our goal here is to prove global existence and uniqueness of solutions for initial data

u0 ∈ Lq(Ω) for any 1 ≤ q < ∞ under the only additional assumption that f0(x, u) is
almost monotonic, i.e, to satisfy the following condition

∂uf0(x, u) ≤ L(x), for all x ∈ Ω, u ∈ R (1.5)

for some L ∈ Lσ0(Ω), σ0 > N/2. Note that this implies

uf(x, u) ≤ C(x)u2 +D(x)|u|, x ∈ Ω, u ∈ R, (1.6)

for C = m+ L ∈ Lσ(Ω), σ = min{r0, σ0} > N/2 and 0 ≤ D = |g| ∈ Lq0(Ω).
This paper is organised as follows. In Section 2 we recall some known results about

local and global existence of solutions for problem (1.1) with smooth enough initial data.
In Section 3, we proof our main results. Namely, problem (1.1) is well-posed in Lq(Ω)
for every 1 ≤ q <∞ and its solutions are unique and globally defined, see Theorems 3.1
and 3.3. Finally, in Section 4 we make some remarks on the asymptotic behaviour of the
solutions of the problems, compare the results with known ones, and give some examples.

2 Preliminary results

Notice that, from (1.4), the Nemytskii operator associated to F (x, u) = g(x) + f0(x, u)
is Lipschitz on bounded sets of L∞(Ω) into of Lq0(Ω) and so we have the existence of
local solutions of problem (1.1) for smooth initial data. Namely, using the standard
Bessel–Lebesgue spaces Hα,q(Ω), we have using the techniques in [5]

Theorem 2.1 Assume that f is as in (1.2)–(1.3). If α < 1 is such that 2α− N
q0
> 0 , then

for any initial data u0 ∈ H2α,q0(Ω) ∩H1,q0
0 (Ω) there exists a unique local solution of (1.1)

with initial data u0, with u(·;u0) ∈ C([0, τ);H2α,q0(Ω) ∩ H1,q0
0 (Ω)) ∩ C((0, τ);H2,q0(Ω))

and ut ∈ C((0, τ);H2γ,q0(Ω) ∩H1,q0
0 (Ω)) for any γ < 1, for some τ depending on u0.

The solution satisfies the Variation of Constant Formula,

u(t;u0) = Sm(t)u0 +

∫ t

0

Sm(t− s)(g + f0(u(s;u0))) ds, t > 0,

where Sm denotes the semigroup generated by ∆ + m(x)I with Dirichlet boundary condi-
tions.

Note that since q0 > N/2, H2α,q0(Ω) ∩ H1,q0
0 (Ω) ⊂ Cη

0 (Ω) for any 0 ≤ η < 2 − N/q0.
In particular the solution satisfies u ∈ C([0, τ) × Ω). Also, if g and L0(·, R), for each R,
are a bounded functions, then the above holds for any N/2 < q0 <∞.

On the other hand, it is known that condition (1.6) ensures the global existence of
the local solutions in Theorem 2.1 (see [1] and [9]) and so we have u ∈ C([0,∞) × Ω).
Namely, we have
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Theorem 2.2 Assume that f is as in (1.2)–(1.3) and satisfies (1.6), that is

uf(x, u) ≤ C(x)u2 +D(x)|u|, x ∈ Ω, u ∈ R,

for some C ∈ Lσ(Ω) and 0 ≤ D ∈ Lρ(Ω) with σ, ρ > N/2.
Then for the solutions in Theorem 2.1 one has τ =∞.

3 Existence in Lq(Ω), 1 ≤ q <∞
The goal of the section is to prove main result in this work. Namely, the existence of a
unique solution of problem (1.1) starting at u0 ∈ Lq(Ω) for any 1 ≤ q <∞. We start now
with the existence part.

Theorem 3.1 Let 1 ≤ q <∞. Suppose that f is as in (1.2)–(1.3) and f0 satisfies (1.5)
with L ∈ Lσ0(Ω), σ0 > N/2. Then, for any u0 ∈ Lq(Ω), there exists a solution of (1.1)
defined for all t ≥ 0, u, such that

u ∈ C([0,∞);Lq(Ω)) ∩ C((0,∞);H2,q0(Ω) ∩H1,q0
0 (Ω)), u(0) = u0

and satisfies

u(t) = Sm(t)u0 +

∫ t

0

Sm(t− s)(g + f0(·, u(s))) ds (3.1)

where Sm denotes the semigroup generated by ∆ + m(x)I with Dirichlet boundary condi-
tions.

Moreover, for each T > 0 there exists c(T ) such that

|u(t, x)| ≤ c(T )
(

1 + t−
N
2q ‖u0‖Lq(Ω)

)
, 0 < t ≤ T for all x ∈ Ω. (3.2)

Proof. We proceed in several steps. In the first step, fixed 1 ≤ q < ∞, we construct a
Cauchy sequence of approximating solutions. Then, we obtain a uniform L∞(Ω) bound
for the approximating sequence. In a third step, we show that the limit of the approxi-
mating solutions is a solution of the limit problem (notice that such limit exists since the
approximating solutions forms a Cauchy sequence). Finally, we show how to obtain more
regularity of the solution constructed in the previous steps.

Step 1. Approximate the initial data. Let α < 1 such that 2α − N
q0
> 0. Then,

by Theorem 2.1, the problem (1.1) is well-posed in H2α,q0(Ω) ∩ H1,q0
0 (Ω). Also, since f

satisfies (1.6), the solutions are globally defined for t > 0, see Theorem 2.2 and (1.6).
Hence, for any 1 ≤ q < ∞ and u0 ∈ Lq(Ω), we can take smooth enough initial data

un0 ∈ H2α,q0(Ω) ∩ H1,q0
0 (Ω) such that un0 → u0 in Lq(Ω) as n → ∞ and consider the

solutions of (1.1) starting at un0 . We define un(t) = u(t;un0 ).
Let vn,k(t) = un(t)− uk(t). Subtracting equations for un and uk, we have

∂tvn,k(t)−∆vn,k(t) = m(x)vn,k(t) + f0(x, un(t))− f0(x, uk(t)) in Ω
vn,k = 0 on Γ

vn,k(0) = u0
n − u0

k in Ω.
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Observe that given T > 0, for fixed n, k, we have for almost all x ∈ Ω, t ∈ [0, T ] and
some 0 < θ(t, x) < 1

f0(x, un(t, x))− f0(x, uk(t, x)) = ∂uf0(x, θ(t, x)un(t, x) + (1− θ(t, x))uk(t, x))vn,k(t, x)

= Cn,k(t, x)vn,k(t, x)

for some function Cn,k(t, x). Notice that Cn,k ∈ L∞((0, T );Lq0(Ω)) since un and uk are
smooth, f0 is locally Lipschitz in the second variable with an Lq0(Ω) Lipschitz constant.
Also, from (1.5) we have Cn,k(x, t) ≤ L(x) for all t ≥ 0 and x ∈ Ω.

Now, consider the linear problem
zt −∆z = (m(x) + Cn,k(t, x))z in Ω

z = 0 on Γ
z(0) = z0 in Ω

(3.3)

with z0 smooth and denote by z(t, 0; z0) the solution, whose existence follows from [7] or
[3]. Such solutions satisfy, by comparison, z(t, 0;−|z0|) ≤ z(t, 0; z0) ≤ z(t, 0; |z0|), i.e,

|z(t, 0; z0)| ≤ z(t, 0; |z0|), t ≥ 0,

and the latter is a nonnegative solution of (3.3).
But for nonnegative initial data, z0 ≥ 0, since Cn,k(x, t) ≤ L(x) for all t ≥ 0 and

x ∈ Ω, we can compare z(t, 0; z0) ≥ 0 with the solutions of
wt −∆w = (m(x) + L(x))w in Ω

w = 0 on Γ
w(0) = z0 ≥ 0 in Ω

to obtain 0 ≤ z(t, 0; z0) ≤ w(t; z0) for any t ≥ 0.
Hence, we obtain that for any smooth initial data z0 in (3.3) we have

|z(t, 0; z0)| ≤ w(t; |z0|) for t ≥ 0.

In particular,
‖z(t, 0; z0)‖Lq(Ω) ≤ ‖w(t; |z0|)‖Lq(Ω) ≤ ce−λt‖z0‖Lq(Ω)

where λ is the first eigenvalue of −∆ − (m(x) + L(x))I on Ω with Dirichlet boundary
conditions.

Now, vn,k is a solution of (3.3) and so

‖vn,k(t)‖Lq(Ω) ≤ ce−λt‖vn,k(0)‖Lq(Ω)

for all t ≥ 0. In particular, given T > 0, we have that for any 0 ≤ t ≤ T ,

‖vn,k(t)‖Lq(Ω) ≤ c(T )‖vn,k(0)‖Lq(Ω) → 0 as n, k →∞

and so, un is a Cauchy sequence in C([0, T ];Lq(Ω)).
Hence, there exists u ∈ C([0,∞);Lq(Ω)) such that for any T > 0,

sup
t∈[0,T ]

‖un(t)− u(t)‖Lq(Ω) ≤ c(T )‖u0
n − u0‖Lq(Ω) → 0 as n→∞ (3.4)
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i.e, for any T > 0,
un → u in C([0, T ];Lq(Ω)).

In particular, passing to a subsequence if needed, we can assume un(t, x) → u(t, x) as
n→∞ a.e. for (t, x) ∈ [0, T ]× Ω.

Also it is easy to see that u does not depend on the sequence of initial data, but only
on u0 ∈ Lq(Ω).
Step 2. L∞-bound for the approximating sequence. Let us show now that the
sequence un(t) is uniformly bounded in L∞(Ω) with respect to n, for 0 < ε ≤ t ≤ T .

For this, since f satisfies (1.6), we will use the auxiliary problem
Ut −∆U = C(x)U +D(x) in Ω

U = 0 on Γ
U(0) given in Lq(Ω)

(3.5)

with C = m+ L ∈ Lσ(Ω), σ = min{r0, σ0} > N/2 and 0 ≤ D = |g| ∈ Lq0(Ω), q0 > N/2.
Denote by Un(t, x) the solution of (3.5) with initial data |un0 | and by U(t, x) the solution

of (3.5) with initial data |u0|.
Now, using the variation of constants formula in (3.5) we have

Un(t) = Φ(t) + Un
h (t), U(t) = Φ(t) + Uh(t)

where Un
h (t), Uh(t) are the solutions of the homogeneous problem

Vt −∆V = C(x)V in Ω
V = 0 on Γ

V (0) given in Lq(Ω)

resulting from taking D ≡ 0 in (3.5) and initial data |un0 | and |u0| respectively, and Φ(t)
is the unique solution of problem (3.5) with U(0) = 0 (which does not depend on un0 or
u0), that is, 

Wt −∆W = C(x)W +D(x) in Ω
W = 0 on Γ

W (0) = 0 in Ω.

In other words Un
h (t) = SC(t)|un0 |, Uh(t) = SC(t)|u0| and Φ(t) =

∫ t
0
SC(t − s)D ds where

SC denotes the semigroup generated by ∆ + C(x)I with Dirichlet boundary conditions.
Hence standard linear parabolic estimates implies that, for any T > 0,

‖Un(t)‖L∞(Ω) ≤ c(T )(1 + t−
N
2q ‖un0‖Lq(Ω)), 0 < t ≤ T,

‖Un(t)‖Lq(Ω) ≤ c(T )(1 + ‖un0‖Lq(Ω)), 0 ≤ t ≤ T.

Also,

‖Un(t)− U(t)‖L∞(Ω) = ‖Un
h (t)− Uh(t)‖L∞(Ω) = ‖SC(t)(|un0 | − |u0|)‖L∞(Ω)

≤ c(T )t−
N
2q ‖|un0 | − |u0|‖Lq(Ω) → 0 as n→∞
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for 0 < t ≤ T , and for 0 ≤ t ≤ T

‖Un(t)− U(t)‖Lq(Ω) ≤ c(T )‖|un0 | − |u0|‖Lq(Ω) → 0 as n→∞.

Therefore, for any 0 < ε < T <∞,

Un → U in L∞([ε, T ]× Ω) ∩ C([0, T ];Lq(Ω)).

Observe now that, since f satisfies (1.6), Un(t, x) is a supersolution of problem (1.1)
and −Un(t, x) is a subsolution. Thus,

|un(t, x)| ≤ Un(t, x) ≤ c(T )(1 + t−
N
2q ‖un0‖Lq(Ω)), 0 < t ≤ T, a.e. in Ω, (3.6)

and so
‖un(t)‖L∞(Ω) ≤ c(ε, T, ‖un0‖Lq(Ω)), ε ≤ t ≤ T.

Now, since un0 → u0 in Lq(Ω) as n→∞ and the convergences Un(t, x)→ U(t, x) and
un(t, x)→ u(t, x) obtained above (see (3.4)) we get

|u(t, x)| ≤ U(t, x) ≤ c(T )(1 + t−
N
2q ‖u0‖Lq(Ω)), 0 < t ≤ T, for a.e. x ∈ Ω. (3.7)

Now observe that the bounds above, the regularity of un in Theorem 2.1 and (3.4)
imply that for any 0 < ε < T <∞ and 1 ≤ s <∞,

sup
t∈[ε,T ]

‖un(t)− u(t)‖Ls(Ω) → 0 as n→∞ (3.8)

i.e, for any T > 0 and 1 ≤ s <∞,

un → u in C([ε, T ];Ls(Ω)).

In particular u ∈ C((0,∞);Ls(Ω)) for any 1 ≤ s <∞.

Step 3. The limit is a solution of (1.1). First, assume 0 < ε < t < T . Then for any

φ ∈ H2,q′0(Ω) ∩ H1,q′0
0 (Ω), where q′0 is the conjugate of q0, i.e, 1

q0
+ 1

q′0
= 1 (as usual, for

q0 = 1 we take q′0 =∞), we have from (1.1) and the regularity if un in Theorem 2.1,

d

dt

∫
Ω

unφ+

∫
Ω

un(−∆φ) =

∫
Ω

f(·, un)φ =

∫
Ω

gφ+

∫
Ω

m(x)unφ+

∫
Ω

f0(x, un)φ.

Now, using the uniform bounds in (3.6), (3.7) and the convergence in (3.8), and the
fact that f0 is locally Lipchitz in its second variable with an Lq0(Ω) Lipschitz constant,
we have that for 1 ≤ s ≤ q0,

f0(·, un)→ f0(·, u) in C([ε, T ];Ls(Ω)).

Hence, letting n→∞,we get

d

dt

∫
Ω

uφ+

∫
Ω

u(−∆φ) =

∫
Ω

f(·, u)φ =

∫
Ω

gφ+

∫
Ω

m(x)uφ+

∫
Ω

f0(x, u)φ.
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Notice that from [2], this implies

u(t) = Sm(t− ε)u(ε) +

∫ t

ε

Sm(t− s)h(s) ds (3.9)

where Sm(t) denotes the strongly continuous analytic semigroup generated by ∆ +m(x)I
with homogeneous Dirichlet boundary conditions, and h(·) = g+f0(·, u(·)) ∈ L∞([ε, T ];Lq0(Ω)).

The smoothing effect of the semigroup gives that∫ t

ε

Sm(t− s)h(s) ds ∈ C([ε, T ];H2γ,q0(Ω) ∩H1,q0
0 (Ω)), for any γ < 1,

while the continuity of the linear semigroup Sm(t) at 0 and u(ε)→ u0 in Lq(Ω) as ε→ 0,
give, taking ε→ 0 in (3.9),

lim
ε→0

∫ t

ε

Sm(t− s)h(s) ds = u(t)− Sm(t)u0.

Thus,

u(t) = Sm(t)u0 +

∫ t

0

Sm(t− s)(g + f0(s, u(s))) ds.

Step 4. Further regularity. From the smoothing effect of the semigroup Sm(t) and
the regularity observed above, we have that for any ε > 0, u(ε) ∈ H2α,q0(Ω) ∩ H1,q0

0 (Ω)
for some α < 1 such that 2α− N

q0
> 0.

Therefore, for t ≥ ε, u(t) coincides with the unique solution in Theorems 2.1 and 2.2.
In particular u(t) is continuous in Ω and we can take x ∈ Ω in (3.7).

Now, from (3.7) and standard Lp-Lq estimates for (3.5) we have,

Corollary 3.2 For 1 ≤ q < ∞ and T > 0, we have that the solution u in Theorem 3.1
satisfies, for q ≤ p ≤ ∞,

‖u(t)‖Lp(Ω) ≤ c(T )
(

1 + t−
N
2 ( 1

q
− 1

p)‖u0‖Lq(Ω)

)
0 < t ≤ T.

Let show now that the solutions of (1.1) in Lq(Ω) are unique for 1 ≤ q <∞.

Theorem 3.3 Given u0 ∈ Lq(Ω), 1 ≤ q <∞, there exists a unique function

v ∈ C([0,∞);Lq(Ω)) ∩ L∞loc((0,∞);L∞(Ω)), v(0) = u0

that satisfies

v(t) = Sm(t)u0 +

∫ t

0

Sm(t− s)(g + f0(·, v(s))) ds, t ≥ 0 (3.10)

where Sm denotes the semigroup generated by ∆ + m(x)I with Dirichlet boundary condi-
tions.

Therefore the function u(·) constructed in Theorem 3.1 is the unique function satisfying
this.
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Proof. Notice that the function u constructed in Theorem 3.1 satisfies the assumptions
above. So, let v also satisfy the statement of the theorem. Then from (3.10) we have that,
for any ε > 0,

v(t) = Sm(t− ε)v(ε) +

∫ t

ε

Sm(t− s)(g + f0(·, v(s))) ds.

From the assumptions on v we have that h(s) = g+f0(·, v(s)) satisfies, for any T > 0,
that h ∈ L∞([ε, T ];Lq0(Ω)). Then, the smoothing effect of the semigroup gives that

v ∈ C([ε, T ];H2γ,q0(Ω) ∩H1,q0
0 (Ω)), for any γ < 1.

Hence, for t ≥ ε, v is a solution as in Theorem 2.1.
Hence, arguing as in (3.8) we have

sup
ε≤t≤T

‖u(t)− v(t)‖Lq(Ω) ≤ c(T )‖u(ε)− v(ε)‖Lq(Ω)

with c(T ) not depending on ε.
The continuity of u and v at 0 in Lq(Ω), and the fact that u(0) = v(0) imply u = v.

4 Final remarks and examples

(i) Note that Theorems 3.1 and 3.3 allow to define a strongly continuos nonlinear semi-
group in Lq(Ω) as

S(t)u0 = u(t;u0), t ≥ 0

where u(t;u0) is the solution in Theorem 3.1.
The asymptotic behavior of this semigroup is the same as the semigroup obtained for

more regular initial data from Theorems 2.1 and 2.2. In fact, from (3.2) we get that for
any 0 < ε < T <∞ and for any bounded set of initial data B ⊂ Lq(Ω) we get that

{S(t)B, ε ≤ t ≤ T} is bounded in L∞(Ω).

This implies, in turn that

{g + f0(·, u(t;u0)), ε ≤ t ≤ T, u0 ∈ B} is bounded in Lq0(Ω)

and again the smoothing effect of the semigroup implies that

{S(t)B, ε ≤ t ≤ T} is bounded in H2γ,q0(Ω) ∩H1,q0
0 (Ω))

for any γ < 1.
In particular, the compact attractor found in [1] and [9] also attracts the solutions of

Theorem 3.1, starting in bounded sets of Lq(Ω) for any 1 ≤ q <∞.
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(ii) Notice that similar results as here have been obtained in [1], [4] and [8]. However
those proof are based on energy estimates of the approximating solutions, while the proof
presented above is based on the maximum principle, in the form of the comparison prin-
ciple.

In particular, for the case of initial data in L1(Ω), using the former technique would
require using Kato’s inequality which turns out to be not “dissipative enough” to obtain
Theorem 3.1. In fact in that case one would require L ∈ L∞(Ω); see [4]. So, our proof
provides a unified argument for the cases q = 1 and 1 < q <∞.

(iii) The standard theory for semilinear reaction-diffusion equations requires f to satisfy
some growth restriction in order to obtain a local well-posed problem in Lq(Ω). Namely,
the equation (1.1) is locally well posed provided f satisfies

|f(x, t)− f(x, s)| ≤ C(1 + |s|p−1 + |s|p−1)|t− s|, t, s ∈ R (4.11)

for all x ∈ Ω, with

p ≤ pc = 1 +
2q

N

(
i.e, for any q ≥ qC =

N(p− 1)

2

)
.

Our results in this paper use no growth assumption whatsoever.

(iv) Theorems 3.1 and 3.3 extend to problems in unbounded domains in a natural way
(see [1]). Also, the same techniques can be applied to obtain solutions in RN in any locally
uniform space, LqU(Ω), see [4] for a proof based on energy estimates. In the case of initial
data in L1

U(Ω), L in (1.5) was required in [4] to be bounded. By the techniques presented
here, no such additional restriction is required on L in order to obtain a solution.

(v) In [6], positive solutions of equation ut − ∆u = −|u|p with measures as initial data
is considered. In particular, for positive L1(Ω) densities, the solution is unique. We have
shown that this uniqueness also holds for general L1(Ω) initial data (with no assumption
on their sign).

(vi) An example of nonlinearity for which all the previous results apply is the following:

f0(x, u) =
k∑
j=1

nj(x)hj(u) + f1(x, u)

with hj ∈ C1(R), hj(0) = h′j(0) = 0, j = 1, . . . , k, and f1(x, u) is a Hölder continuous
with respect to x uniformly for u in bounded sets of R, ∂sf1(x, u) is bounded in x for u
in bounded sets of R and f1(x, 0) = ∂uf1(x, 0) = 0, x ∈ Ω. This includes in particular the
following cases, taking f1 ≡ 0:

• Logistic equation

f0(x, u) = −n(x)|u|ρ−1u

with n(x) a nonnegative Ld(Ω) function, with d > N/2, not identically zero, and
ρ > 1. In this case, L0(x,R) = ρRρ−1n(x) ∈ Lr(Ω) and so q0 = d. Also, we can
take L ≡ 0 in (1.5).
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• Polynomial nonlinearity

f0(x, u) =
k∑
j=2

nj(x)uj

with k odd, and nj ∈ Ldj(Ω), with dj > N/2 to be made precise below, for 2 ≤ j ≤ k,
and nk(x) ≤ a0 < 0 for all x ∈ Ω. In this case, we can take

L0(x,R) =
k∑
j=2

(j − 1)Rj−1|nj(x)|,

thus L0 ∈ Lq0(Ω) with q0 = min{d1, . . . , dk} > N/2.

Also, ∂sf0(x, u) is bounded above by

max
u∈R

[
knk(x)uk−1 +

k−1∑
j=2

jnj(x)uj−1

]
. (4.12)

Since k−1 is even, using Young’s inequality each term |jnj(x)uj−1|, for 2 ≤ j ≤ k−1,
is bounded above by εuk−1 + C(ε)|nj(x)|(k−1)/(k−j) for any ε > 0.

Also, since nk(x) < a0 < 0, for sufficiently small ε > 0, (4.12) is bounded above by

ka0

2
uk−1 + C(ε)

k−1∑
j=2

|nj(x)|(k−1)/(k−j),

and we can then take,

L(x) = C(ε)
k−1∑
j=2

|nj(x)|(k−1)/(k−j).

Then, L ∈ Lσ0(Ω), with

σ0 = min
j=2,...,k−1

{dj(k − j)
(k − 1)

} < q0,

which we need to be larger than N/2, that is, dj > N (k−1)
2(k−j) , j = 2, . . . , k − 1.

• Polynomial nonlinearity with monotone powers

f0(x, u) =
k∑
j=1

nj(x)|u|ρj−1u

with nk(x) ≤ a0 < 0, x ∈ Ω and 1 < ρj < ρk, nj ∈ Ldj(Ω), dj > N/2 for 1 ≤ j ≤ k.
We can take L and L0 analogous to the previous example.

10



References

[1] J. M. Arrieta, J. W. Cholewa, T. Dlotko, and A. Rodŕıguez-Bernal. Asymptotic be-
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